

- According to IEC/EN 60 947-1, IEC/EN 60 947-4-2
- Switching at zero crossing
- To reverse 3 phase asynchronuos motors up to 5.5 kW / 400 V (7.5 HP / 460 V)
- Electrical interlocking of both directions
- Temperature monitoring to protect the power semiconductors
- Measured nominal current up to 20 A
- LEDs for status indication
- Galvanic separation between control circuit and power circuit
- With current monitor
- $45 \mathrm{~mm} ; 67.5 \mathrm{~mm} ; 112.5 \mathrm{~mm}$ width

Approvals and Marking

Function

The reversing contactor BH 9255 is used to reverse the direction of 3 -phase asynchronuos motors by switching 2 phases (L 1 and L 2). An electrical interlocking disables the control of both directions at the same time. The reversing contactor has a short on and off delay time. When reversing the phases a switchover delay is guaranteed.

The motor current is monitored in phase L1. If the current rises above the tripping value the device is able to switch off the motor

Function Diagram

Function

Without bridge $\mathrm{x} 3-\mathrm{x} 4$ (plc control)

After connecting the power supply to A1/A2 the enabling contact 11-14 closes. The motor is now started with a positive edge of the signal on control input r+/rl- (clockwise) or l+/rl- (anti-clockwise).

The start up delay runs. If the start up delay is finished and the current is still over the adjusted value the relay contacts switch back to 11-12. This state is stored. It resets by switching off the motor on the control input.

If the motor current rises above the adjusted value during operation the time tv (switching delay) runs down. If the switching delay is finished and the current is still over the adjusted value the relay contacts switch back to $11-12$. This state is stored. It resets by switching off the motor on the control input.

With bridge x3-x4 (preferred for manual control)
Same function as without bridge, but in addition to the relay contact 11-12 also the motor is switched off at the same time.

Bridge x1-x2: Switchover delay $t_{u} 20$ or 100 ms

Temperature sensing

To protect the power semiconductors the unit incorporates temperature monitoring. When overtemperature is detected e.g. because of reversing to often the power semiconductors swith off and an and the enabling relay switches back in position 11-12. This state is stored. When the temperature is back to normal the semiconductors can be activated again by switching off and on the control voltage.

Indication

green LED „ON"
yellow LED „r" yellowLED „"" red LED „i>"
red LED „७>"
both red LEDs „i>+ $\uparrow>$
on when auxiliary supply connected flushes if „t " abläuft
on, when right direction active
on, when left direction active
on, when overtemperature and flushes during time elaspe of „t" on, when overtemperature flushes if a system fault is detected.

A motor current is measured and while the semiconductors are off. The motor cannot be started.

Technical Data

Input

Technical Data

Unit for
measured nominal current $4 \mathrm{~A} \quad 12 \mathrm{~A} \quad 20 \mathrm{~A}$
without bridge Z1-Z2:
with bridge $\mathrm{Z} 1-\mathrm{Z} 2$:

4 A	12 A	20 A
$0.2 \ldots 2 \mathrm{~A}$	$0.4 \ldots 4 \mathrm{~A}$	$0.8 \ldots 8 \mathrm{~A}$
$1 \ldots 10 \mathrm{~A}$	$2 \ldots 20 \mathrm{~A}$	$4 \ldots 40 \mathrm{~A}$
other measuring ranges on request		

Load Output

	unit without heat sink	with heat sink width 67.5 mm	with heat sink width 112.5 mm
Rated continuous current $\mathrm{I}_{\mathrm{e}}{ }^{1)} \quad[\mathrm{A}]$	4	12	20
Current reduction above $40{ }^{\circ} \mathrm{C} \quad\left[\mathrm{A} /{ }^{\circ} \mathrm{C}\right]$	0.1	0.2	0.2
max. motor power at $400 \mathrm{~V} \quad[\mathrm{~kW}]$	1.1	4	5.5
Nominal motor current $\mathrm{I}_{\mathrm{N}} \quad[\mathrm{A}]$	2.6	8.5	11.5
max. locked rotor motor current ${ }^{2)}$ [A]	15.6	51	69
Example for max. operat. freq. at 100 \% duty cycle, 80 \% motor load, starting time $t_{A} 2 s$, starting current $I_{A}=6 \times I_{N}$	250	210	320
Operation mode	AC53a acc. to IEC/EN 60947-4-2		

${ }^{1)}$ The rated continuous current I_{e} is the max. permissible current of the unit in continuous operation.
${ }^{2)}$ The max. locked rotor motor or starting current of 100 A for $1 \mathrm{~s}, 85 \mathrm{~A}$ for 2 s and 70 A for 5 s must not be exceeded.
3) $A t t_{A}=1 \mathrm{~s}$

Note: \quad The max. permissible operating frequency of the motor can be less. See motor data!

Load voltage range: AC $24 \ldots 480 \mathrm{~V}$
Peak inverse voltage: 1200 Vp
Frequency range:
Surge current 10 ms :
Semiconductor fuse:
Varistor voltage:

50 / 60 Hz

350 A
$610 \mathrm{~A}^{2} \mathrm{~s}$
AC 510 V

Cycle diagram to calculate the operating frequency

Formula for selection of unit and motor

$$
\begin{array}{lll}
I_{e} \stackrel{!}{\sum}\left[I_{A} t_{A}+\right. & \left.I_{B}\left(T-t_{A}\right)\right] & \text { Device selection } \\
I_{N}^{2}{ }_{N}^{2} \frac{1}{T}\left[I_{A}^{2} t_{A}+\right. & \left.I_{B}^{2}\left(T-t_{A}\right)\right] & \text { Motor selection }
\end{array}
$$

Monitoring Output

Contacts

BH 9255.11:
Thermal current $I_{\text {th }}$:
Switching capacity
at AC 15
NO:
NC:
Short circuit strength
max. fuse rating:

1 changeover contact 5 A

3 A / AC 230 V
IEC/EN 60 947-5-1
1 A / AC 230 V IEC/EN 60 947-5-1
4 AgL
IEC/EN 60 947-5-1

Technical Data

General Data

Operating mode: Temperature range:

Clearance and creepage distances
rated impuls voltage / pollution degree:
EMC
Surge voltages:
Electrostatic discharge:
HF irradiation:
Fast transients:
Surge voltages between
wires for power supply:
HF wire guided:
Interference suppression:
Degree of protection:
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:
Wire connection
Load terminals:
Control terminals:

Wire fixing:

Mounting:

Weight:
BH 9255 with 4 A:
BH 9255 with 12 A:
BH 9255 with 20 A:

Continuous operation
$-20 \ldots+60^{\circ} \mathrm{C}$
Current reduction over $40^{\circ} \mathrm{C}$: see table
$4 \mathrm{kV} / 2$
IEC 60 664-1
5 kV / 0.5 J
8 kV (air) IEC/EN 61 000-4-2
$10 \mathrm{~V} / \mathrm{m} \quad$ IEC/EN 61 000-4-3
4 kV
1 kV IEC/EN 61 000-4-5
10 V IEC/EN 61 000-4-6
Limit value class B
IP $40 \quad$ IEC/EN 60529
IP 20 IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm IEC/EN 60 068-2-6
frequency $10 \ldots 55 \mathrm{~Hz}$
20/040/04 IEC/EN 60 068-1
EN 50005
$1 \times 10 \mathrm{~mm}^{2}$ solid or
$1 \times 6 \mathrm{~mm}^{2}$ stranded ferruled
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3/-4
terminal screws M3.5; box terminals
with self-lifting wire protection
DIN rail
IEC/EN 60715
460 g
700 g
1160 g

Dimensions

Width \mathbf{x} heigth x depth:

BH 9255 with 4 A
BH 9255 with 12 A:
BH 9255 with 20 A:
$45 \times 84 \times 121 \mathrm{~mm}$
$67.5 \times 84 \times 121 \mathrm{~mm}$
$112.5 \times 84 \times 121 \mathrm{~mm}$

UL-Data							
		unit without heat sink		with heat sink width 67.5 mm		with heat sink width 112.5 mm	
Ambient conditions		For usage at pollution degree 2; To be used in circuits that allows a max. curent of 5000Arms at 460 V . The device has to be fused with a fuse class RK5 25A.					
Rated continuous current $\mathrm{I}_{\mathrm{e}}{ }^{\text {1) }}$	[A]	4		12		20	
Ambient temperature	$\left[{ }^{\circ} \mathrm{C}\right]$	40	60	40	60	40	60
max. motor power at 460 V	[HP]	1,5	0,75	5	3	7,5	5
Nominal motor current FLA (Full load current)	[A]	3,0	1,6	7,6	4,8	11	7,6
max. locked rotor motor current LRA	[A]	20	12,5	46	32	63,5	46
${ }^{\text {1) }}$ The rated continuous current I_{e} is the max. permissible current of the unit in continuous operation.							

Wire connection
Load terminals
L1, L2, L3, T1, T2, T3: $\quad 60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 18-8 Sol Torque 0.8 Nm AWG 18-10 Str Torque 0.8 Nm

Control terminals

A1, A2, A3, 11, 12, 14 :
$60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ copper conductors only AWG 20-12 Sol Torque 0.8 Nm AWG 20-14 Str Torque 0.8 Nm

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Type

BH 9255.11/61 AC $230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 4 \mathrm{~A}$ AC/DC $80 \ldots 230 \mathrm{~V}$
Artikelnummer: 0064648

- Output:
- Auxiliary voltage U_{H} :
- Rated continuous current:
- Control input:
- Width:

0064648
1 changeover contact
AC 230 V
4 A
AC/DC 80 ... 230 V
45 mm

Ordering Example

Application Examples

BH 9255 with A1/A2 = AC 230 V and control input AC/DC 80 ... 230 V

BH 9255 with A1/A2 = AC/DC 24 V and control input AC/DC 24 V or DC 24 V

