Power Electronics

POWERSWITCH Reversing Contactor With Current Monitor BH 9255

- According to IEC/EN 60 947-1, IEC/EN 60 947-4-2
- Switching at zero crossing
- To reverse 3 phase asynchronuos motors up to 5.5 kW / 400 V (7.5 HP / 460 V)
- Electrical interlocking of both directions
- Temperature monitoring to protect the power semiconductors
- Measured nominal current up to 20 A
- LEDs for status indication
- Galvanic separation between control circuit and power circuit
- With current monitor
- 45 mm; 67.5 mm; 112.5 mm width

Circuit Diagram

Approvals and Marking

Function

The reversing contactor BH 9255 is used to reverse the direction of 3-phase asynchronuos motors by switching 2 phases (L1 and L2). An electrical interlocking disables the control of both directions at the same time. The reversing contactor has a short on and off delay time. When reversing the phases a switchover delay is guaranteed.

The motor current is monitored in phase L1. If the current rises above the tripping value the device is able to switch off the motor

Function Diagram

Function

Without bridge x3-x4 (plc control)

After connecting the power supply to A1/A2 the enabling contact 11-14 closes. The motor is now started with a positive edge of the signal on control input r+/rl- (clockwise) or l+/rl- (anti-clockwise).

The start up delay runs. If the start up delay is finished and the current is still over the adjusted value the relay contacts switch back to 11-12. This state is stored. It resets by switching off the motor on the control input.

If the motor current rises above the adjusted value during operation the time tv (switching delay) runs down. If the switching delay is finished and the current is still over the adjusted value the relay contacts switch back to 11-12. This state is stored. It resets by switching off the motor on the control input.

With bridge x3-x4 (preferred for manual control)

Same function as without bridge, but in addition to the relay contact 11-12 also the motor is switched off at the same time.

Bridge x1-x2: Switchover delay t_{...} 20 or 100 ms

Temperature sensing

To protect the power semiconductors the unit incorporates temperature monitoring. When overtemperature is detected e.g. because of reversing to often the power semiconductors swith off and an and the enabling relay switches back in position 11-12. This state is stored. When the temperature is back to normal the semiconductors can be activated again by switching off and on the control voltage.

Indication

green LED "ON"	on when auxiliary supply connected flushes if "t." abläuft
yellow LED "r"	on, when right direction active
yellowLED "I"	on, when left direction active
red LED "i>"	on, when overtemperature and
	flushes during time elaspe of "t,"
red LED "ϑ>"	on, when overtemperature
both red LEDs "i> + ϑ >"	flushes if a system fault is detected.
	A motor current is measured and while the semiconductors are off. The motor
	cannot be started.

Technical Data

Input

Auxiliary voltage U.:	AC/DC 24 V:

AC 110 ... 127 V, AC 230 V, AC 288 V,

AC 400 V (no UL-devices)

Voltage range: AC: 0.8 ... 1.1 U_H

DC: 0.8 ... 1.25 U

Nominal consumption

at AC 230 V: 5 VA, 1.1 W at DC 24 V: 0.6 W 50 / 60 Hz Nominal frequency:

Control input

r+ /rl / l+: DC 24 V preferred for plc control

(short response time) AC/DC 24 ... 80 V AC/DC 80 ... 230 V

Input	DC 24 V	AC/DC 24 80 V AC/DC 80 230 V
Start up delay:	≤ 10 ms + max. 1 half-wave	≤ 15 ms + max. 1 half-wave
Release delay:	≤ 10 ms + max. 1 half-wave	≤ 60 ms

Switchover delay t :: programmable via bridge on

terminals X1 - X2

without bridge: 20 ms

100 ms with bridge:

Start up delay t: 0.1 ... 5 s, adjustable via potentiometer Switching delay t: 0.1 ... 5 s, adjustable via potentiometer 2 ranges programmable via bridge Current measuring range:

on terminals Z1 -Z2

Technical Data

Unit for

measured nominal current 12 A 4 A 20 A without bridge Z1 - Z2: 0.2 ... 2 A 0.4 ... 4 A 0.8 ... 8 A with bridge Z1 - Z2: 1 ... 10 A 2 ... 20 A 4 ... 40 A other measuring ranges on request

Load Output

		unit without heat sink	with heat sink width 67.5 mm	with heat sink width 112.5 mm	
Rated continuous current I _e 1)	[A]	4	12	20	
Current reduction above 40 °C	[A/°C]	0.1	0.2	0.2	
max. motor power at 400 V	[kW]	1.1	4	5.5	
Nominal motor current I _N	[A]	2.6	8.5	11.5	
max. locked rotor motor current ²⁾	[A]	15.6	51	69	
Example for max. operat. freq. at 100 % duty cycle, 80 % motor load, starting time $t_{\rm A}$ 2s, starting current $I_{\rm A}$ = 6 x $I_{\rm N}$	[1/h]	250	210	320	
Operation mode		AC53a acc. to IEC/EN 60947-4-2			

¹⁾ The rated continuous current I is the max. permissible current of the unit in continuous operation.

 $^{3)}$ At $t_{_{A}} = 1 \text{ s}$

The max. permissible operating frequency of the motor Note:

can be less. See motor data!

Load voltage range: AC 24 ... 480 V 1 200 Vp Peak inverse voltage: Frequency range: 50 / 60 Hz Surge current 10 ms: 350 A 610 A²s Semiconductor fuse: Varistor voltage: AC 510 V

Cycle diagram to calculate the operating frequency

Formula for selection of unit and motor

$$\begin{split} I_{e} &\stackrel{j}{\geq} \frac{1}{T} \quad \left[I_{A} \, t_{A} \, + \qquad I_{B} \, \left(T \! - \! t_{A} \right) \right] \quad \text{Device selection} \\ I_{N}^{2} &\stackrel{j}{\geq} \frac{1}{T} \, \left[I_{A}^{2} \, t_{A} \, + \qquad I_{B}^{2} \left(T \! - \! t_{A} \right) \right] \quad \text{Motor selection} \end{split}$$

Monitoring Output

Contacts

BH 9255.11: 1 changeover contact

Thermal current I_{th}: 5 A

Switching capacity at AC 15

NO: 3 A / AC 230 V IEC/EN 60 947-5-1 NC: 1 A / AC 230 V IEC/EN 60 947-5-1 Short circuit strength

IEC/EN 60 947-5-1 max. fuse rating: 4 A gL

2 22.04.13 en / 328

²⁾ The max. locked rotor motor or starting current of 100 A for 1 s, 85 A for 2 s and 70 A for 5 s must not be exceeded.

Technical Data

General Data

Operating mode: Continuous operation **Temperature range:** - 20 ... + 60 °C

Current reduction over 40 °C: see table

IEC/EN 61 000-4-5

Clearance and creepage

distances

rated impuls voltage / pollution degree: 4 kV / 2

pollution degree: 4 kV / 2 IEC 60 664-1

EMC

Surge voltages: 5 kV / 0.5 J

Surge voltages between wires for power supply:

HF wire guided: 10 V IEC/EN 61 000-4-6 Interference suppression: Limit value class B EN 55 011

1 kV

Degree of protection:

Housing: IP 40 IEC/EN 60 529
Terminals: IP 20 IEC/EN 60 529
Housing: Thermoplastic with V0 behaviour

according to UL subject 94

Vibration resistance: Amplitude 0.35 mm IEC/EN 60 068-2-6

frequency 10 ... 55 Hz

Climate resistance: 20 / 040 / 04 IEC/EN 60 068-1

Terminal designation: EN 50 005

Wire connection

Load terminals: 1 x 10 mm² solid or

1 x 6 mm² stranded ferruled

Control terminals: 2 x 2.5 mm² solid or

2 x 1.5 mm² stranded ferruled

DIN 46 228-1/-2/-3/-4

Wire fixing: terminal screws M3.5; box terminals

with self-lifting wire protection

Mounting: DIN rail IEC/EN 60 715

Weight:

BH 9255 with 4 A: 460 g BH 9255 with 12 A: 700 g BH 9255 with 20 A: 1160 g

Dimensions

Width x heigth x depth:

BH 9255 with 4 A: 45 x 84 x 121 mm BH 9255 with 12 A: 67.5 x 84 x 121 mm BH 9255 with 20 A: 112.5 x 84 x 121 mm

UL-Data

		with	nit nout sink	wic	sink	wi heat wid 112.5	sink
Switching capacity							
Relay NO-contact NC-contact	[Vac]	230; 3A; GP 230; 1A; GP					
Short circuit current rating	[Arms]	5000					
Ambient conditions		To be m 460	usage used nax. cu V. The vith a f	in circ rent of device	cuits the following formula to the following f	at allo Arms a o be fu	ws a at used
Rated continuous current I _e 1)	[A]	4	1	1	2	2	0
Ambient temperature	[°C]	40	60	40	60	40	60
max. motor power at 460 V	[HP]	1,5	0,75	5	3	7,5	5
Nominal motor current FLA (Full load current)	[A]	3,0	1,6	7,6	4,8	11	7,6
max. locked rotor motor current LRA	[A]	20	12,5	46	32	63,5	46
Determine the second of the se							

The rated continuous current ${\bf I}_{\rm e}$ is the max. permissible current of the unit in continuous operation.

Wire connection Load terminals

L1, L2, L3, T1, T2, T3: 60°C / 75°C copper conductors only

AWG 18 - 8 Sol Torque 0.8 Nm AWG 18 - 10 Str Torque 0.8 Nm

Control terminals

A1, A2, A3, 11, 12, 14: 60°C / 75°C copper conductors only

AWG 20 - 12 Sol Torque 0.8 Nm AWG 20 - 14 Str Torque 0.8 Nm

Technical data that is not stated in the UL-Data, can be found in the technical data section.

Standard Type

BH 9255.11 /61 AC 230 V 50 / 60 Hz 4 A AC/DC 80 ... 230 V

Artikelnummer: 0064648

Output: 1 changeover contact

Auxiliary voltage U_H: AC 230 V
 Rated continuous current: 4 A

• Control input: AC/DC 80 ... 230 V

Width: 45 mm

Ordering Example

3 22.04.13 en / 328

Application Examples

BH 9255 with A1/A2 = AC 230 V and control input AC/DC 80 \dots 230 V

BH 9255 with A1/A2 = AC/DC 24 V and control input AC/DC 24 V or DC 24 V