

- Thyristor electronic motor brake relay for motors up to 5.5 kW
- Adjustable braking current, optional up to max. 26 A
- Adjustable braking time, optional up to max. 60 s
- Internal braking contactor
- Optional with standstill monitoring
- Optional with protection against overtemperature
- Width 150 mm

Approvals and Marking

C

Applications

DC-brake for squirrel cage motors in:

- woodworking machines
- centrifuges, conveyor belts
- mills, grinding machines
- shaker conveyors

Construction and Action

With the supply voltage connected to terminals L1-L2, the interlock contact 17-18 for the motor contactor is closed. A red LED indicates that supply voltage is present. The motor can started by the "ON" button. The DC braking current can be collected at the T1 and T2 terminals.

The relay operates in the following manner:
When the motor contactor has been deenergized, the braking current contactor is closed, after a fixed safety time delay to allow inductive voltages to decay. After that the braking current is flowing through the stator windings for the set braking time.

Indicators

LED red (L1/L2):
LED red (ϑ):
LED green $\left(I_{\mathrm{B}}\right)$:
supply voltage is present
thermal protection has responsed braking current is present

Notes

Because the DC braking current is produced by a phase controlled thyristor rectification circuit and the DC current is a product of the supply voltage applied to L1-L2 and the winding resistance, the max. current can be significantly larger than the permissible current, if the potentiometer is turned to right end.

Standstill is monitoring at 3 Hz . One mark for the proximity switch is equivalent to 180 rpm . With more marks the standstill speed can be reduced.

Control Input

If the connection between Q1-Q2 is made, the device turned into standby mode. After opening the connection, the device starts with braking.

Monitoring Output
17, 18: 27, 28: interlock contact for motor contactor activation of braking contactor
Adjustment Facilities
Potentiometer Description I_{B} Fundamental adjustment t_{B} braking current left position

Commissioning

The braking time t_{B} has to be determined experimentally. Braking current I_{B} is adjusted to be $1.8 \ldots 2$ times the rated motor current I_{N}. If the motor stops and hums the time t_{B} is too long. If motor is still turning after time t_{B} has elapsed, t_{B} is too short and has to be increased.

In the basic circuit braking current I_{B} is injected into one stator winding. For high inertia applications braking current I_{B} should be injected into two or more stator windings. Combining 2 stator windings with the built-in contact 27-28 increases braking efficiency for the same braking current I_{B}. If contact $27-28$ is used to switch an aux. relay also 3 stator windings may be connected in line.

Braking with time delay t_{B} and current I_{B}

As soon as relay S 1 opens it is recognized by the motor brake via the inputs Q1-Q2 (contact opening principle). After a fixed delay of approx. 80 msec . the braking current I_{B} is injected for the duration of the set braking time t_{B}. During this time contacts 17-18 are opened to prevent the motor contactor energizing while braking. The lit green LED I_{B} indicates the presence of the braking current I_{B}. After t_{B} has elapsed the current I_{B} is switched off, the green LED I_{B} extinguishes and contacts 17-18 closes. The motor can be restarted.

Commissioning

Braking with standstill monitoring

Under certain running conditions the rise in temperature of the stator windings may cause the actual braking time t_{B} to standstill to be less than the time set under cold conditions. The speed condition may be used to override time by connecting a proximity switch to terminals "+", "n" and "o" with potentiometer t_{B} set to maximum. When standstill is registered the brake relay switches off after 300 msec . As a safety feature, should the sensor fail, the brake relay will continue to time out and switch off when the max. set time is reached.

Overtemperature protection

It is possible under very arduous operating conditions that the relay power components will overheat. A thermal cut-out will disconnect the brake relay and by opening contacts 17-18 prevent reenergization of the motor until a suitable cooling period elapses. A red LED (ϑ) indicates the overheat condition.

Response temperature: $\quad 90 \ldots 95^{\circ} \mathrm{C}$
Hysteresis:
approx. 5 \%

Safety Instructions

- Never clear a fault when the device is switched on
- The user must ensure that the device and the necessary components are mounted and connected according to the locally applicable regulations and technical standards
- Adjustments may only be carried out by instructed specialist staff, while the applicable safety rules must be observed.

Application Examples

Reversing control connection (direct switching). Braking while turning left or right with AR 9021

Y - Δ - control, braking with AR 9021

Dahlander Control Circuit, braking of low and high revolutions with AR 9021

Application Examples

Pole commutation (seperate windings), braking of low and high revolutions with AR 9021

Multi motor braking (2 motors switched in series) with AR 9021. Braking circuit must to be adhered to.

